Sabtu, 27 November 2010

MEMORI DAN JENIS JENIS NYA


MEMORY DAN JENIS-JENISNYA


Memori komputer


Memori fisik merupakan istilah generik yang merujuk pada media penyimpanan data sementara pada komputer. Setiap program dan data yang sedang diproses oleh prosesor akan disimpan di dalam memori fisik. Data yang disimpan dalam memori fisik bersifat sementara, karena data yang disimpan di dalamnya akan tersimpan selama komputer tersebut masih dialiri daya (dengan kata lain, komputer itu masih hidup). Ketika komputer itu direset atau dimatikan, data yang disimpan dalam memori fisik akan hilang. Oleh karena itulah, sebelum mematikan komputer, semua data yang belum disimpan ke dalam media penyimpanan permanen (umumnya bersifat media penyimpanan permanen berbasis disk, semacam hard disk atau floppy disk), sehingga data tersebut dapat dibuka kembali pada lain waktu.
Memori fisik umumnya diimplementasikan dalam bentuk Random Access Memory (RAM), yang bersifat dinamis (DRAM). Mengapa disebut Random Access, adalah karena akses terhadap lokasi-lokasi di dalamnya dapat dilakukan secara acak (random), bukan secara berurutan (sekuensial). Meskipun demikian, kata random access dalam RAM ini sering menjadi salah kaprah. Sebagai contoh, memori yang hanya dapat dibaca (ROM), juga dapat diakses secara random, tetapi ia dibedakan dengan RAM karena ROM dapat menyimpan data tanpa kebutuhan daya dan tidak dapat ditulisi sewaktu-waktu. Selain itu, hard disk yang juga merupakan salah satu media penyimpanan juga dapat diakses secara random, tapi ia tidak digolongkan ke dalam Random Access Memory.
Penggunaan Memory Komponen utama dalam sistem komputer adalah Arithmetic Logic Unit (ALU), Control Circuitry, Storage Space dan piranti Input/Output. Jika tanpa memory, maka komputer hanya berfungsi sebagai digital signal processing devices, contohnya kalkulator atau media player. Kemampuan memory untuk menyimpan data, instruksi dan informasi-lah yang membuat komputer dapat disebut sebagai general-purpose komputer. Komputer merupakan piranti digital, maka informasi disajikan dengan sistem bilangan binary. Teks, angka, gambar, sudio dan video dikonversikan menjadi sekumpulan bilangan binary (binary digit atau disingkat bit). Sekumpulan bilangan binary dikenal dengan istilah BYTE, dimana 1 byte = 8 bits. Semakin besar ukuran memory-nya maka semakin banyak pula informasi yang dapat disimpan di dalam komputer (storage devices). Berikut ini beberapa gambar yang bisa mewakili bagaimana cara informasi disimpan dalam memory dan bagaimana data ditransfer dari satu bagian ke bagian lainnya.
RAM (Random-Access Memory)
Ia merupakan istilah menyeluruh bagi semua ingatan yang boleh dibaca atau ditulis secara tidak sehala (non-linear). Bagaimanapun ia merujuk secara khusus kepada ingatan berasaskan cip apabila kesemua ingatan berasaskan cip sebelum ini dikatakan bersifat akses-rawak. RAM adalah agak berlainan dengan ROM, kerana komputer hanya boleh membaca pada ROM tetapi boleh membaca dan menulis pada RAM.

SIMM (Single In-line Memory Module) dan DIMM (Dual In-line Memory Module)
SIMM dan DIMM sebenarnya tidak merujuk kepada jenis-jenis memori tetapi merujuk kepada modul (papan litar yang berserta dengan cip) di mana RAM dipakejkan bersama. SIMM merupakan modul yang terdahulu dengan menawarkan laluan data sebanyak 32-bit. Disebabkan pemproses Pentium telah direkabentuk untuk menangani laluan data yang lebih lebar daripada itu, SIMM mesti digunakan secara berpasangan dengan papan utama Pentium. Bagaimanapun SIMM masih boleh digunakan secara tunggal teteapi hanya di atas papan utama yang berasaskan pemproses 486 atau pemproses yang lebih perlahan.
Manakala DIMM yang merupakan modul terbaru akan menawarkan laluan 64-bit agar menjadikan lebih sesuai untuk digunakan bersama pemproses Pentium dan pemproses terbaru yang lain seperti AMG dan Cyrix. Dari segi pembelian komponen ingatan, setiap unit DIMM terbukti berupaya untuk mengendalikan kerja-kerja yang boleh dilakukan oleh dua unit SIMM. Tambahan pula ia boleh digunakan secara tunggal pada papan utama Pentium. Dari segi jangka panjang pula DIMM adalah lebih ekonomik kerana ia tidak perlu menambah satu lagi DIMM pada sistem ingatan komputer.

DRAM (Dynamic RAM)
DRAM pula merupakan sejenis ingatan piawaian utama dalam komputer hari ini dan ia akan dirujuk apabila anda hendak memberitahu seseorang bahawa PC anda memiliki 32MB RAM. Di dalam DRAM, maklumat akan disimpan sebagai satu siri cas elektronik dalam sebuah kapasitor. Dalam setiap milisaat (milisecond) pengecasan secara elektronik kapasitor pada DRAM tersebut akan nyahcas (discharge) dan perlu disegarkan semula (refresh) untuk mengekalkan nilainya. Penyegaran secara berterusan ini telah dijadikan alasan untuk meletakkan istilah dynamic di hadapan susunan huruf RAM.

FPM RAM (Fast Page-Mode RAM)
Sebelum kemunculan EDO RAM, semua ingatan utama yang terdapat di dalam PC adalah dari jenis mod-halaman pantas (fast page-mode variety). Nama tersebut juga tidak begitu dikenali manakala jenisnya pula hanyalah satu. Bagaimanapun kemajuan teknologi telah berjaya mengurangkan masa akses bagi FPM RAM daripada 120-ns (nanosaat) kepada masa akses sekarang iaitu 60-ns. Bagaimanapun pemproses Pentium hanya mengiktiraf bas berkepantasan 66 Mhz kerana bas tersebut lebih pantas keupayaannya berbanding dengan keupayaan FPM RAM. Dengan kepantasan 60-ns akan membolehkan modul RAM melaksana akses halaman rawak (di mana halaman dirujuk sebagai satu rantau ruangan alamat) di bawah kepantasan 30 Mhz walaupun ia dianggap terlalu perlahan berbanding dengan kepantasan bas.

EDO RAM (Extended-Data-Out RAM)
EDO RAM sebenarnya tidak lebih daripada satu peningkatan kepada FPM RAM. Apa yang penting ialah ia mengiktiraf kebanyakan masa apabila CPU meminta ingatan bagi sesuatu alamat tertentu, di samping meminta beberapa alamat lain yang berdekatan. Di samping mendesak setiap akses ingatan kembali segar, EDO RAM bergantung pada lokasi akses sebelumnya bagi memecut akses ke alamat yang berdekatan. EDO RAM mempercepatkan kitaran ingatan, dengan meningkatkan prestasi di dalam ingatan sebanyak 40 peratus. Tetapi EDO RAM hanyalah efektif bagi bas berkepantasan 66 Mhz dan ia boleh dipercepatkan lagi dengan keupayaan pintasan yang terdapat pada kebanyakan pemproses terkini seperti AMD, Cyrix dan Intel.

BEDO RAM (Burst Extended-Data-Out RAM)
Bagi meningkatkan kepantasan mengakses data ke dalam cip memori DRAM, satu teknologi yang dikenali sebagai bursting telah dibangunkan untuk tujuan tersebut. Teknologi ini melibatkan penghantaran blok data yang besar untuk diproses kepada unit-unit data yang lebih kecil. Istilah DRAM pada cip tersebut adalah merujuk kepada teknologi penghantaran data terperinci yang meliputi penghantaran beberapa halaman alamat di dalam cip memori.

SDRAM (Synchronous Dynamic RAM)
Terdapat dua kelebihan yang terdapat pada cip memori jenis SDRAM. Pertama, ia boleh mengendalikan kepantasan bas sehingga 100 Mhz dan kedua, cip memori jenis SDRAM boleh dihubungkan (synchronized) dengan sistem jamnya sendiri. Teknologi yang terdapat pada cip ini membolehkan dua halaman memori dibuka secara berterusan.
Manakala cip memori jenis SLDRAM merupakan replikasi cip jenis SDRAM yang telah dipertingkatkan teknologinya dengan menawarkan kepantasan bas yang lebih tinggi dan ia menggunakan peket-peket kecil data untuk mengendalikan alamat yang diminta; pemasaan dan arahan kepada cip memori DRAM. Pemilihan SLDRAM hanya melibatkan kos yang rendah tetapi prestasi memori yang ditawarkan adalah lebih tinggi.

SRAM (Static Random-Access Memory)
Perbezaan di antara cip memori jenis SRAM dan DRAM ialah di mana cip DRAM mesti disegarkan secara berterusan sedangkan cip SRAM dapat melakukan secara otomatik dan ia hanya berlaku apabila satu arahan bertulis dilaksanakan. Jika arahan bertulis tidak dilakukan maka tiada sebarang perubahan pada cip SRAM dan keadaan ini dikenali sebagai static. Kelebihan yang terdapat pada cip memori jenis SRAM berbanding dengan cip jenis DRAM ialah kepantasannya yang boleh mencapai 12-ns manakala 50-ns bagi cip memori jenis BEDO. Manakala kelemahan yang dimiliki oleh cip jenis SRAM terletak pada harganya yang lebih mahal daripada DRAM. Setakat ini SRAM kerap digunakan di dalam PC pada tahap cache yang kedua atau L2 Cache.

L2 Cache
Istilah cache adalah merujuk kepada kaedah peramalan dan pengendalian data yang akan diminta dan yang sudah dimiliki. Apabila sebuah CPU membuat satu permintaan terhadap data, maka data tersebut boleh diperolehi daripada salah satu tempat berikut iaitu L1 cache, L2 cache, memori utama atau cakera keras.
Cip L1 cache terletak di atas CPU dan saiznya lebih kecil daripada ketiga-tiga tempat simpanan data yang lain. Manakala cip L2 cache merupakan kawasan memori yang berasingan dan ia boleh dikonfigurasikan bersama cip memori jenis SRAM. Pencarian data lazimnya bermula di dalam cip L1 cache kemudian beralih kepada cip L2 cache, cip DRAM dan seterusnya dalam cakera keras. Cip L2 cache terletak di antara cip jenis DRAM dan CPU, manakala fungsinya menawarkan akses yang lebih pantas daripada prestasi cip DRAM. Sistem cache diwujudkan untuk membolehkan akses memori yang lebih pantas dan mungkin sepantas CPU.

Async SRAM (Asynchronous SRAM)
Cip yang dikenali sebagai Async SRAM telah pun wujud sejak kemunculan teknologi pemproses 386 lagi dan masih mendapat tempat di dalam L2 cache bagi kebanyakan PC. Ia dinamakan asynchronous kerana cip memori jenis ini tidak dihubungkan dengan sistem jam. Jadi CPU mesti menunggu terlebih dahulu data yang telah diminta daripada L2 cache.

Sync SRAM (Synchronous Burst SRAM)
Seperti mana cip jenis SDRAM, cip memori yang dinamakan sebagai Sync SRAM juga dihubungkan dengan sistem jam untuk menjadikannya lebih pantas daripada prestasi Async SRAM yang biasa digunakan untuk L2 cache yang berkelajuan di sekitar 8.5-ns. Bagaimanapun cip Sync SRAM akan hilang keupayaannya apabila dihubungkan pada kepantasan bas yang melebihi 66 Mhz.

PB SRAM (Pipeline Burst SRAM)
Cip memori jenis PB SRAM menggunakan sistem yang dinamakan sebagai pipelining dan kepantasannya sedikit ketinggalan di belakang sistem yang dipanggil synchronization. Bagaimanapun peningkatan teknologinya mungkin melebihi teknologi yang dimiliki oleh cip memori Sync SRAM kerana ia direkabentuk agar serasi dengan bas yang memiliki kepantasan 75 Mhz atau lebih tinggi. Cip memori jenis PB SRAM bakal memainkan peranan utama di dalam memantapkan lagi prestasi sistem komputer yang menggunakan mikropemproses Pentium II atau yang lebih tinggi.

VRAM (Video RAM)
Cip memori jenis VRAM berfungsi dengan baik pada prestasi video dan boleh menjumpainya pada kad video accelerator atau pada papan induk yang memiliki teknologi video. Cip VRAM biasanya digunakan untuk menyimpan kandungan pixel bagi sebuah paparan grafik.
Penggunaan cip VRAM akan memberikan prestasi video yang pantas dan berupaya mengurangkan tekanan pada CPU. Cip VRAM melibatkan penggunaan dua port akses kepada sel memori dan salah satu daripadanya digunakan secara tetap untuk menyegarkan paparan dan yang satu lagi digunakan untuk mengubah data yang akan dipaparkan. Penggunaan dua port dapat memberikan persembahan video yang pantas berbanding dengan penggunaan cip DRAM dan cip SRAM yang hanya memiliki satu port akses.

WRAM (Windows RAM)
Seperti mana cip VRAM, cip memori jenis WRAM juga memiliki port berganda dan ia digunakan untuk persembahan grafik. Pengoperasian cip memori jenis WRAM adalah sama seperti cip jenis VRAM, tetapi ia menggunakan jalur lebar yang lebih tinggi sebagai tambahan kepada beberapa ciri grafik untuk kegunaan pembangun aplikasi. Cip memori jenis WRAM juga menggunakan sistem yang dikenali sebagai buffering data berganda bagi meningkatkan kepantasan penyegaran skrin.

SGRAM (Synchronous Graphics RAM)
Cip memori jenis SGRAM telah digunakan terutamanya pada kad accelerator video dan ia merupakan sejenis RAM berport tunggal. Prestasinya dipertingkatkan dengan penggunaan sistem yang dipanggil dual-bank akan membolehkan dua permukaan memori dapat dibuka secara berterusan. Penggunaan cip memori jenis SGRAM adalah sesuai bagi pemain video 3-D (tiga dimensi) kerana terdapat sebuah blok-bertulis yang akan memecut segala muatan grafik pada paparan skrin. Video tiga dimensi biasanya memerlukan pecutan yang pantas iaitu dalam julat 30 hingga 40 bingkai dalam tempoh sesaat.

0 komentar:

Posting Komentar